• Temperature of a rocky exoplanet measure

    From ScienceDaily@1:317/3 to All on Monday, March 27, 2023 22:30:20
    Temperature of a rocky exoplanet measured

    Date:
    March 27, 2023
    Source:
    NASA/Goddard Space Flight Center
    Summary:
    An international team of researchers has used NASA's James Webb
    Space Telescope to measure the temperature of the rocky exoplanet
    TRAPPIST-1 b.

    The measurement is based on the planet's thermal emission: heat
    energy given off in the form of infrared light detected by Webb's
    Mid-Infrared Instrument (MIRI). The result indicates that the
    planet's dayside has a temperature of about 500 kelvins (roughly
    450 degrees Fahrenheit) and suggests that it has no significant
    atmosphere.


    Facebook Twitter Pinterest LinkedIN Email
    FULL STORY ==========================================================================
    An international team of researchers has used NASA's James Webb Space
    Telescope to measure the temperature of the rocky exoplanet TRAPPIST-1
    b. The measurement is based on the planet's thermal emission: heat energy
    given off in the form of infrared light detected by Webb's Mid-Infrared Instrument (MIRI). The result indicates that the planet's dayside has
    a temperature of about 500 kelvins (roughly 450 degrees Fahrenheit)
    and suggests that it has no significant atmosphere.


    ==========================================================================
    This is the first detection of any form of light emitted by an exoplanet
    as small and as cool as the rocky planets in our own solar system. The
    result marks an important step in determining whether planets orbiting
    small active stars like TRAPPIST-1 can sustain atmospheres needed to
    support life. It also bodes well for Webb's ability to characterize
    temperate, Earth-sized exoplanets using MIRI.

    "These observations really take advantage of Webb's mid-infrared
    capability," said Thomas Greene, an astrophysicist at NASA's Ames
    Research Center and lead author on the study published today in the
    journal Nature. "No previous telescopes have had the sensitivity to
    measure such dim mid-infrared light." Rocky Planets Orbiting Ultracool
    Red Dwarfs In early 2017, astronomers reported the discovery of seven
    rocky planets orbiting an ultracool red dwarf star (or M dwarf) 40
    light-years from Earth.

    What is remarkable about the planets is their similarity in size and mass
    to the inner, rocky planets of our own solar system. Although they all
    orbit much closer to their star than any of our planets orbit the Sun -
    all could fit comfortably within the orbit of Mercury - they receive
    comparable amounts of energy from their tiny star.

    TRAPPIST-1 b, the innermost planet, has an orbital distance about one
    hundredth that of Earth's and receives about four times the amount
    of energy that Earth gets from the Sun. Although it is not within
    the system's habitable zone, observations of the planet can provide
    important information about its sibling planets, as well as those of
    other M-dwarf systems.

    "There are ten times as many of these stars in the Milky Way as there are
    stars like the Sun, and they are twice as likely to have rocky planets as
    stars like the Sun," explained Greene. "But they are also very active -
    they are very bright when they're young, and they give off flares and
    X-rays that can wipe out an atmosphere." Co-author Elsa Ducrot from the
    French Alternative Energies and Atomic Energy Commission (CEA) in France,
    who was on the team that conducted earlier studies of the TRAPPIST-1
    system, added, "It's easier to characterize terrestrial planets around
    smaller, cooler stars. If we want to understand habitability around
    M stars, the TRAPPIST-1 system is a great laboratory. These are the
    best targets we have for looking at the atmospheres of rocky planets." Detecting an Atmosphere (or Not) Previous observations of TRAPPIST-1
    b with the Hubble and Spitzer space telescopes found no evidence for a
    puffy atmosphere, but were not able to rule out a dense one.

    One way to reduce the uncertainty is to measure the planet's
    temperature. "This planet is tidally locked, with one side facing the star
    at all times and the other in permanent darkness," said Pierre-Olivier
    Lagage from CEA, a co-author on the paper. "If it has an atmosphere to circulate and redistribute the heat, the dayside will be cooler than
    if there is no atmosphere." The team used a technique called secondary
    eclipse photometry, in which MIRI measured the change in brightness from
    the system as the planet moved behind the star. Although TRAPPIST-1 b is
    not hot enough to give off its own visible light, it does have an infrared glow. By subtracting the brightness of the star on its own (during the secondary eclipse) from the brightness of the star and planet combined,
    they were able to successfully calculate how much infrared light is
    being given off by the planet.

    Measuring Minuscule Changes in Brightness Webb's detection of a secondary eclipse is itself a major milestone. With the star more than 1,000 times brighter than the planet, the change in brightness is less than 0.1%.

    "There was also some fear that we'd miss the eclipse. The planets all
    tug on each other, so the orbits are not perfect," said Taylor Bell,
    the post-doctoral researcher at the Bay Area Environmental Research
    Institute who analyzed the data. "But it was just amazing: The time of
    the eclipse that we saw in the data matched the predicted time within
    a couple of minutes." The team analyzed data from five separate
    secondary eclipse observations. "We compared the results to computer
    models showing what the temperature should be in different scenarios," explained Ducrot. "The results are almost perfectly consistent with a
    blackbody made of bare rock and no atmosphere to circulate the heat. We
    also didn't see any signs of light being absorbed by carbon dioxide, which would be apparent in these measurements." This research was conducted
    as part of Webb Guaranteed Time Observation (GTO) program 1177, which is
    one of eight programs from Webb's first year of science designed to help
    fully characterize the TRAPPIST-1 system. Additional secondary eclipse observations of TRAPPIST-1 b are currently in progress, and now that they
    know how good the data can be, the team hopes to eventually capture a full phase curve showing the change in brightness over the entire orbit. This
    will allow them to see how the temperature changes from the day to the nightside and confirm if the planet has an atmosphere or not.

    "There was one target that I dreamed of having," said Lagage, who worked
    on the development of the MIRI instrument for more than two decades. "And
    it was this one. This is the first time we can detect the emission from
    a rocky, temperate planet. It's a really important step in the story of discovering exoplanets."
    * RELATED_TOPICS
    o Space_&_Time
    # Extrasolar_Planets # Stars # Astronomy # Pluto #
    Kuiper_Belt # Eris_(Xena) # Mars # Sun
    * RELATED_TERMS
    o Spitzer_space_telescope o Space_observatory o
    Compton_Gamma_Ray_Observatory o Eris_(dwarf_planet) o Uranus
    o Titan_(moon) o Venus o Neptune

    ========================================================================== Story Source: Materials provided by
    NASA/Goddard_Space_Flight_Center. Note: Content may be edited for style
    and length.


    ========================================================================== Journal Reference:
    1. Thomas P. Greene, Taylor J. Bell, Elsa Ducrot, Achre`ne Dyrek,
    Pierre-
    Olivier Lagage, Jonathan J. Fortney. Thermal Emission from the
    Earth- sized Exoplanet TRAPPIST-1 b using JWST. Nature, 2023; DOI:
    10.1038/ s41586-023-05951-7 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2023/03/230327163227.htm

    --- up 1 year, 4 weeks, 10 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)