• All organisms produce methane

    From ScienceDaily@1:317/3 to All on Friday, March 11, 2022 21:30:42
    All organisms produce methane
    The formation of the greenhouse gas is driven by reactive oxygen species


    Date:
    March 11, 2022
    Source:
    Max-Planck-Gesellschaft
    Summary:
    It is well known that methane, a greenhouse gas, is produced by
    special microorganisms, for example in the intestines of cows,
    or in rice fields.

    For some years, scientists had also observed the production of
    methane in plants and fungi, without finding an explanation. Now
    researchers have shed light on the underlying mechanism. Their
    findings suggest that all organisms release methane.



    FULL STORY ==========================================================================
    It is well known that methane, a greenhouse gas, is produced by special microorganisms, for example in the intestines of cows, or in rice
    fields. For some years, scientists had also observed the production
    of methane in plants and fungi, without finding an explanation. Now
    researchers from Heidelberg and the Max Planck Institute for Terrestrial Microbiology in Marburg have shed light on the underlying mechanism. Their findings suggest that all organisms release methane.


    ========================================================================== Methane is a potent greenhouse gas, so the study of its natural
    and anthropogenic biogeochemical sources and sinks is of enormous
    interest. For many years, scientists considered methane to be produced
    only by single-celled microbes called Archaea, upon decomposition of
    organic matter in the absence of oxygen (anaerobic).

    Now, a collaboration of earth and life scientists led by Frank Keppler
    and Ilka Bischofs has shown that an enzyme is potentially not necessary
    for methane formation, as the process can also take place via a purely
    chemical mechanism.

    "Methane formation triggered by reactive oxygen species most likely occurs
    in all organisms," explains Leonard Ernst, an interdisciplinarily trained junior researcher who conducted the study. The scientists verified the
    reactive oxygen species-driven formation of methane in more than 30 model organisms, ranging from bacteria and archaea to yeasts, plant cells and
    human cell lines.

    It was a sensation when Max Planck researchers discovered the release
    of methane from plants in the presence of oxygen (aerobic) 16 years
    ago. However, initially the results were doubted, since methane formation
    could not be explained with the then existing knowledge about plants. When researchers observed that also fungi, algae and cyanobacteria (formerly blue-green algae) formed methane under aerobic conditions, enzymatic
    activities were assumed to be responsible. However, the researchers never
    found a corresponding enzyme in any of these organisms. "This study is therefore a milestone in our understanding of aerobic methane formation
    in the environment," said Frank Keppler, a geoscientist at Heidelberg University. "This universal mechanism also explains the observations of
    our previous study on the release of methane from plants," adds Keppler.

    High cell activity leads to more methane As the researchers have now
    been able to show using the bacterium Bacillus subtilis, there is
    a close connection between metabolic activity and extent of methane
    formation. Metabolic activity, especially under the influence of oxygen,
    leads to the formation of reactive oxygen species in cells, which
    include hydrogen peroxide and hydroxyl radicals. In interaction with the essential element iron, the Fenton reaction takes place -- a reaction
    between reduced iron and hydrogen peroxide that leads to the formation
    of highly reactive tetravalent iron compounds and hydroxyl radicals.

    The latter molecules drive the cleavage of a methyl radical from
    methylated sulfur and nitrogen compounds, e.g., the amino acid
    methionine. In a subsequent reaction of the methyl radical with a hydrogen atom, methane is finally formed.

    All reactions can take place under physiological conditions in a test
    tube and are significantly enhanced by biomolecules such as ATP and NADH,
    which are generated by cellular metabolism.

    Oxidative stress boosts methane formation Additional oxidative stress, triggered by physical and chemical factors, e.g.

    higher ambient temperatures or the addition of reactive oxygen
    species-forming substances, also led to an increase in methane formation
    in the examined organisms. In contrast, the addition of antioxidants and
    the scavenging of free radicals reduced the formation of methane -- an interaction that probably controls the formation of methane in organisms.

    The study therefore also helps to explain why methane production by
    a certain organism can vary by several orders of magnitude and why
    stress factors particularly affect the amount of production. Shifts in environmental and temperature conditions caused by climate change could potentially influence the stress levels of many organisms and thus their atmospheric methane emissions.

    Conversely, variations in the methane content of the breath could indicate
    age- or stress-related changes in cellular metabolism.


    ========================================================================== Story Source: Materials provided by Max-Planck-Gesellschaft. Note:
    Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Leonard Ernst, Benedikt Steinfeld, Uladzimir Barayeu, Thomas
    Klintzsch,
    Markus Kurth, Dirk Grimm, Tobias P. Dick, Johannes G. Rebelein,
    Ilka B.

    Bischofs, Frank Keppler. Methane formation driven by reactive
    oxygen species across all living organisms. Nature, 2022; DOI:
    10.1038/s41586- 022-04511-9 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/03/220311115336.htm

    --- up 1 week, 4 days, 10 hours, 51 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)