• New study confirms bioengineered RSV pro

    From ScienceDaily@1:317/3 to All on Thursday, March 10, 2022 21:30:42
    New study confirms bioengineered RSV protein vaccine evokes protective
    immune response

    Date:
    March 10, 2022
    Source:
    University of California - Santa Cruz
    Summary:
    Researchers marked a major milestone in the effort to create an
    effective vaccine for respiratory syncytial virus (RSV), which
    can cause severe respiratory disease in children and the elderly.



    FULL STORY ========================================================================== Close interactions with infectious disease set both University of
    California, Santa Cruz graduate student Ana Nun~ez Castrejon and
    Associate Professor of Biomolecular Engineering Rebecca DuBois on
    the path of studying Respiratory syncytial virus (RSV), a common and
    sometimes dangerous respiratory disease for which there is not currently
    a vaccine. The two researchers recently marked a major milestone in their effort to create an effective vaccine for the virus with the publishing
    of their paper "Structure-based design and antigenic validation of
    respiratory syncytial virus G immunogens" in the Journal of Virology.


    ==========================================================================
    For fifth-year Baskin Engineering student and the paper's lead author
    Nun~ez Castrejon, a bout of pneumonia that lingered for months when she
    was an undergraduate student sparked her interest in studying respiratory illnesses.

    For DuBois, watching her child go through a serious infection of RSV,
    which can cause severe respiratory infections in infants/children and
    the elderly, led her to study the disease.

    "We have all of these wonderful childhood vaccines that have eliminated so
    much childhood disease, but there are still a lot of infectious diseases
    that are really tough on children, and RSV is one of those that causes hospitalizations in children," DuBois said.

    Now, the team focuses on bioengineering the structure of RSV's G protein,
    which attaches the virus to host cells. The researchers altered the
    structure of the protein to eliminate its negative effects and while
    still eliciting a protective response from the immune system in the form
    of antibodies that bind to the G protein.

    The researcher's 2021 paper showed that their engineered G protein
    was able to stimulate a stronger antibody response than the native
    G protein. However, it was unclear if the engineered G protein still
    "looked like" the native protein does on the surface of the virus. The
    newest study confirms that this engineered G protein looks the same and
    is recognized by human RSV-fighting antibodies.

    "My paper shows that the engineered mutation in the protein doesn't
    disrupt the ability of antibodies to bind it, so when it is used as a
    vaccine antigen it is possible to elicit these protective antibodies in
    animal models, and hopefully in the future people will be protected from
    the disease," Nun~ez Castrejon said.

    This paper is similar to a 2017 publication crucial in the creation of
    the COVID-19 vaccine which described how to bioengineer the coronavirus's
    Spike antigen to induce more and better antibodies, a strategy that was
    used to create to design the Moderna, Pfizer, J&J, and Novavax vaccine
    Spike antigens.

    Both papers use structural biology to ensure that an engineered version of
    a virus can be recognized by the immune system to fight the actual virus.

    "This is the same kind of foundational work that allowed scientists
    to design the coronavirus vaccine so quickly and enable it to look
    exactly like it does on the surface of the virus, and even better,"
    DuBois said. "I think what people are coming to realize is that we
    can make vaccines that stimulate immune responses that are better than
    you get from infection, if we can engineer the antigens in a way that
    really exposes the weaknesses of the virus." Research in DuBois's lab
    differs from other efforts to develop a RSV vaccine in their approach to studying the virus's proteins. Many researchers are focused on altering
    the structure of the RSV F protein, which fuses the virus and host cell membranes together to get the virus's genetic information into cells.

    But late-stage clinical trials of vaccines using this approach show only
    a 60 to 70 percent protection against infection, which is promising but
    lower than what would be hoped for for an important pathogen like RSV.

    In the short term, the researchers are looking to further analyze
    results from collaborators at the University of Georgia as to how their engineered protein affected disease symptoms in mice, and will continue
    to engineer the RSV G protein to produce stronger immune responses. In
    the next five years, they hope to develop an RSV vaccine using their
    engineered protein that is ready for clinical trials.

    DuBois and Castrejon Nun~ez are also collaborating with the biotechnology company Trellis Bioscience, which is investigating the use of monoclonal antibodies to treat infants with RSV infection and severe lung congestion.


    ========================================================================== Story Source: Materials provided by
    University_of_California_-_Santa_Cruz. Original written by Emily
    Cerf. Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Ana M. Nun~ez Castrejon, Sara M. O'Rourke, Lawrence M. Kauvar,
    Rebecca M.

    DuBois. Structure-Based Design and Antigenic Validation of
    Respiratory Syncytial Virus G Immunogens. Journal of Virology,
    2022; DOI: 10.1128/ jvi.02201-21 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/03/220310170824.htm

    --- up 1 week, 3 days, 10 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)