• Researchers bridge the gap between disci

    From ScienceDaily@1:317/3 to All on Monday, May 02, 2022 22:30:42
    Researchers bridge the gap between disciplines to better understand
    chemical reactions

    Date:
    May 2, 2022
    Source:
    Simon Fraser University
    Summary:
    Researchers are yielding new insights into how chemical reactions
    can be understood and guided.



    FULL STORY ========================================================================== Simon Fraser University researchers are yielding new insights into
    how chemical reactions can be understood and guided. Results of their interdisciplinary approach have been published in Physical Review Letters.


    ========================================================================== Though chemical reactions may be very complex, they often follow a series
    of elementary steps as they progress. In their work, SFU chemistry PhD
    student Miranda Louwerse and physics professor David Sivak found that information provided by a reaction coordinate about how a reaction is progressing precisely equals how dissipating that coordinate is.

    Their findings indicate a deep connection between two previously distinct fields of physics -- stochastic thermodynamics, which describes energy
    and information changes, and transition-path theory, which details
    reaction mechanisms.

    Discovering a link between these two fields has allowed the pair to
    create a framework to quantify the information about a reaction contained
    in system dynamics, which provides a physical understanding of what it
    means for particular dynamics to be relevant for that reaction.

    This understanding is particularly useful in helping researchers navigate massive datasets.

    The researchers note that advances in computing are making it easier
    than ever to simulate complex systems and chemical reactions, but along
    with useful information these simulations can produce huge amounts of extraneous data. This framework can help researchers separate signal
    from noise, enabling them to track exactly how a reaction unfolds.

    In the future, this will help researchers and engineers better identify bottlenecks in the production of chemicals, making it easier to design interventions that will allow more control over reactions.

    Through guided design, they will be able to achieve faster and cheaper production of chemicals with less waste. It can also guide a more thorough understanding of how pharmaceutical drugs work in the body, suggesting
    pathways toward developing drugs with less harmful side-effects.

    This insight also raises some intriguing possibilities for more
    communication between disciplines. Establishing the fundamental
    equivalence between basic concepts in distinct fields helps theorists
    apply established theory from one field to the other. This opens up opportunities to adapt methods for measuring energy dissipation to
    identify reaction mechanisms, and may yield further insight in the future.

    "We weren't looking for this," Sivak says. "We found it in the course
    of studying something else. But it fits well in our broad research area understanding the interplay of energy, information, and dynamics in
    biological function at the molecular level.


    ========================================================================== Story Source: Materials provided by Simon_Fraser_University. Note:
    Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Miranda D. Louwerse, David A. Sivak. Information Thermodynamics
    of the
    Transition-Path Ensemble. Physical Review Letters, 2022; 128 (17)
    DOI: 10.1103/PhysRevLett.128.170602 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/05/220502170903.htm

    --- up 9 weeks, 10 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)