• Hubble sheds light on origins of superma

    From ScienceDaily@1:317/3 to All on Wednesday, April 13, 2022 22:30:44
    Hubble sheds light on origins of supermassive black holes
    Astronomers have identified a rapidly growing black hole in the early
    universe that is considered a crucial

    Date:
    April 13, 2022
    Source:
    NASA/Goddard Space Flight Center
    Summary:
    Astronomers have identified a rapidly growing black hole in
    the early universe that is considered a crucial "missing link"
    between young star- forming galaxies and the first supermassive
    black holes. They used data from NASA's Hubble Space Telescope to
    make this discovery.



    FULL STORY ========================================================================== Astronomers have identified a rapidly growing black hole in the early
    universe that is considered a crucial "missing link" between young
    star-forming galaxies and the first supermassive black holes. They used
    data from NASA's Hubble Space Telescope to make this discovery.


    ========================================================================== Until now, the monster, nicknamed GNz7q, had been lurking unnoticed in
    one of the best-studied areas of the night sky, the Great Observatories
    Origins Deep Survey-North (GOODS-North) field.

    Archival Hubble data from Hubble's Advanced Camera for Surveys
    helped the team determine that GNz7q existed just 750 million years
    after the big bang. The team obtained evidence that GNz7q is a newly
    formed black hole. Hubble found a compact source of ultraviolet (UV)
    and infrared light. This couldn't be caused by emission from galaxies,
    but is consistent with the radiation expected from materials that are
    falling onto a black hole.

    Rapidly growing black holes in dusty, early star-forming galaxies are
    predicted by theories and computer simulations, but had not been observed
    until now.

    "Our analysis suggests that GNz7q is the first example of a rapidly
    growing black hole in the dusty core of a starburst galaxy at an epoch
    close to the earliest supermassive black hole known in the universe,"
    explained Seiji Fujimoto, an astronomer at the Niels Bohr Institute of the University of Copenhagen and lead author of the Nature paper describing
    this discovery. "The object's properties across the electromagnetic
    spectrum are in excellent agreement with predictions from theoretical simulations." One of the outstanding mysteries in astronomy today is:
    How did supermassive black holes, weighing millions to billions of times
    the mass of the Sun, get to be so huge so fast?


    ========================================================================== Current theories predict that supermassive black holes begin their lives
    in the dust-shrouded cores of vigorously star-forming "starburst" galaxies before expelling the surrounding gas and dust and emerging as extremely luminous quasars. While extremely rare, both these dusty starburst
    galaxies and luminous quasars have been detected in the early universe.

    The team believes that GNz7q could be a missing link between these two
    classes of objects. GNz7q has exactly both aspects of the dusty starburst galaxy and the quasar, where the quasar light shows the dust reddened
    color. Also, GNz7q lacks various features that are usually observed in
    typical, very luminous quasars (corresponding to the emission from the accretion disk of the supermassive black hole), which is most likely
    explained that the central black hole in GN7q is still in a young and
    less massive phase. These properties perfectly match with the young,
    transition phase quasar that has been predicted in simulations, but
    never identified at similarly high-redshift universe as the very luminous quasars so far identified up to a redshift of 7.6.

    "GNz7q provides a direct connection between these two rare populations
    and provides a new avenue toward understanding the rapid growth of
    supermassive black holes in the early days of the universe," continued Fujimoto. "Our discovery provides an example of precursors to the
    supermassive black holes we observe at later epochs." While other interpretations of the team's data cannot be completely ruled out, the
    observed properties of GNz7q are in strong agreement with theoretical predictions. GNz7q's host galaxy is forming stars at the rate of 1,600
    solar masses per year, and GNz7q itself appears bright at UV wavelengths
    but very faint at X-ray wavelengths.

    Generally, the accretion disk of a massive black hole should be very
    bright in both UV and X-ray light. But this time, although the team
    detected UV light with Hubble, X-ray light was invisible even with one
    of the deepest X-ray datasets. These results suggest that the core of
    the accretion disk, where X- rays originate, is still obscured; while the
    outer part of the accretion disk, where UV light originates, is becoming unobscured. This interpretation is that GNz7q is a rapidly growing black
    hole still obscured by the dusty core of its star-forming host galaxy.

    "GNz7q is a unique discovery that was found just at the center of a
    famous, well-studied sky field -- it shows that big discoveries can
    often be hidden just in front of you," commented Gabriel Brammer,
    another astronomer from the Niels Bohr Institute of the University of Copenhagen and a member of the team behind this result. "It's unlikely
    that discovering GNz7q within the relatively small GOODS-North survey
    area was just 'dumb luck,' but rather that the prevalence of such sources
    may in fact be significantly higher than previously thought." Finding
    GNz7q hiding in plain sight was only possible thanks to the uniquely
    detailed, multiwavelength datasets available for GOODS-North. Without
    this richness of data GNz7q would have been easy to overlook, as it
    lacks the distinguishing features usually used to identify quasars in
    the early universe.

    The team now hopes to systematically search for similar objects using
    dedicated high-resolution surveys and to take advantage of the NASA James
    Webb Space Telescope's spectroscopic instruments to study objects such
    as GNz7q in unprecedented detail.

    "Fully characterizing these objects and probing their evolution and
    underlying physics in much greater detail will become possible with
    the James Webb Space Telescope," concluded Fujimoto. "Once in regular operation, Webb will have the power to decisively determine how common
    these rapidly growing black holes truly are." The Hubble Space Telescope
    is a project of international cooperation between NASA and ESA (European
    Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI)
    in Baltimore, Maryland, conducts Hubble science operations.

    STScI is operated for NASA by the Association of Universities for Research
    in Astronomy, in Washington, D.C.


    ========================================================================== Story Source: Materials provided by
    NASA/Goddard_Space_Flight_Center. Note: Content may be edited for style
    and length.


    ========================================================================== Related Multimedia:
    *
    Unique_object_in_distant_universe_is_crucial_link_between_young_star-
    forming_galaxies_and_earliest_supermassive_black_holes ========================================================================== Journal Reference:
    1. S. Fujimoto, G. B. Brammer, D. Watson, G. E. Magdis, V. Kokorev,
    T. R.

    Greve, S. Toft, F. Walter, R. Valiante, M. Ginolfi, R. Schneider, F.

    Valentino, L. Colina, M. Vestergaard, R. Marques-Chaves,
    J. P. U. Fynbo, M. Krips, C. L. Steinhardt, I. Cortzen,
    F. Rizzo, P. A. Oesch. A dusty compact object bridging galaxies
    and quasars at cosmic dawn. Nature, 2022; 604 (7905): 261 DOI:
    10.1038/s41586-022-04454-1 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/04/220413130839.htm

    --- up 6 weeks, 2 days, 10 hours, 51 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)