• How mussels maintain adhesion underwater

    From ScienceDaily@1:317/3 to All on Tuesday, April 12, 2022 22:30:42
    How mussels maintain adhesion underwater

    Date:
    April 12, 2022
    Source:
    Pohang University of Science & Technology (POSTECH)
    Summary:
    A research team lrevives surface adhesion in proteins by adding
    cysteine- rich protein of mussels. Adding cysteine-rich protein
    to conventional underwater adhesives will increase their adhesion.



    FULL STORY ========================================================================== Bathroom accessories mounted on tile walls often fall off if not mounted correctly. This is because the moisture in the bathroom weakens the
    surface adhesion. Conversely, mussels boast amazing adhesion as they stick firmly to rocks even underwater. Although studies are being conducted
    to utilize these mussel adhesive proteins (MAPs) as an adhesive, its vulnerability to oxidation has made it difficult to fully recreate their underwater strength.


    ========================================================================== Recently, a POSTECH research team led by Professor Hyung Joon Cha,
    Dr. Mincheol Shin, and Ph.D. candidate Taehee Yoon (Department of Chemical Engineering) has verified the secret to the strong surface adhesion
    of mussel adhesive proteins (MAPs) even in an environment that causes oxidation. These findings were recently published in the international
    journal Langmuir.

    MAP is gaining attention as a biomedical material used as a bioadhesive
    or a drug delivery system as it is nature-derived and harmless to the
    body. However, there was a limitation in that Dopa, a major component of
    the mussel adhesive protein, is easily oxidized which leads to weakening
    of the surface adhesion.

    The research team focused on the fact that among the surface proteins
    of mussels, cysteine-rich proteins are involved in oxidation and
    reduction. When Dopa was oxidized to Dopa quinone with weakened adhesion,
    the research team added protein type 6 (fp-6) that contains cysteine,
    which changes the Dopa quinone into △Dopa. △Dopa is a
    tautomerof Dopa quinone and has a very strong surface adhesion like Dopa.

    The research team also verified that when △Dopa is formed in the
    protein, it can have a stronger surface adhesion than Dopa.

    This study is the first study to verify that the fp-6 shifts the tautomer equilibrium of oxidized Dopa to make mussels stick strongly to surfaces
    even in the oxidative underwater conditions. Applying these findings to
    the Dopa-based underwater adhesive can increase its surface adhesion.

    Professor Hyung Joon Cha explained, "We have verified for the first time
    that the cysteine-rich surface protein, conventionally known to block
    oxidation of Dopa, also promotes the change into △Dopa, which
    helps to maintain the adhesion in mussels even in oxidative underwater environments." This study was conducted with the support from the Basic Research Program of the National Research Foundation of Korea.


    ========================================================================== Story Source: Materials provided by Pohang_University_of_Science_&_Technology_(POSTECH).

    Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Mincheol Shin, Taehee Yoon, Byeongseon Yang, Hyung Joon
    Cha. Thiol-Rich
    fp-6 Controls the Tautomer Equilibrium of Oxidized Dopa in
    Interfacial Mussel Foot Proteins. Langmuir, 2022; 38 (11): 3446 DOI:
    10.1021/ acs.langmuir.1c03239 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/04/220412141057.htm

    --- up 6 weeks, 1 day, 10 hours, 51 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)